Loading
Feedback

TXTOCR

Baseline for TXTOCR Challenge

By ashivani

Make your first submission in just a few clicks!

Baseline containing code for submitting submissions for Letter Recognition (AI Blitz 5)
 



AIcrowd-Logo

Getting Started Code for TXTOCR Challenge on AIcrowd

Author : Shubhamai

Installing AIcrowd CLI and Authentication

This will help in easy downloading dataset and submitting directly via this notebook. Do not forget to participate and accept the rules before ruinning this notebook.

In [ ]:
!pip install git+https://gitlab.aicrowd.com/yoogottamk/aicrowd-cli.git
API_KEY = "" #Input your API key here, you can get it from your profile page.
!aicrowd login --api-key $API_KEY

Download Data

The first step is to download our train, val & test data. We will be training a model on the train data and make predictions on test data and submit our predictions.

In [ ]:
!aicrowd dataset download -c txtocr >/dev/null
In [ ]:
!rm -rf data
!mkdir data

!mv train.csv data/train.csv
!mv val.csv data/val.csv

!unzip train.zip -d data/
!unzip val.zip -d data/
!unzip test.zip -d data/

Importing Libraries

In [ ]:
!apt update
!apt install tesseract-ocr
!apt install libtesseract-dev
!pip install --upgrade fastai
!pip install pytesseract
In [ ]:
import pandas as pd
from fastai import *
from fastai.vision import *
from fastai.vision.data import *
from fastai.vision.all import *
import pytesseract
from tqdm.notebook import tqdm

Load Data

  • We use pandas 🐼 library to load our data.
  • Pandas loads the data into dataframes and facilitates us to analyse the data.
  • Learn more about it here 🤓
In [ ]:
train_df = pd.read_csv("data/train.csv")
val_df = pd.read_csv("data/val.csv")
train_df.head()
In [ ]:
# Adding full image path
train_df['image_id'] = "data/train/"+train_df['image_id'].astype(str)+".png"
train_df

Making Predictions

Instead of training our model on training set and then making predictions, we are going to directly make predictions by using pytesseract,an optical character recognition tool for python

In [ ]:
test_imgs_paths = os.listdir("data/test")

predictions = []

for test_img_path in tqdm(test_imgs_paths):


    label = pytesseract.image_to_string(Image.open("data/test/"+test_img_path))
    
    #Removing garbage characters
    label = label.replace("\x0c","")
    label = label.replace("\n","")
    
    predictions.append(label)
In [ ]:
# Making our testing dataframe

test_imgs_paths = [int(i.split(".")[0]) for i in test_imgs_paths]

test_df = pd.DataFrame(test_imgs_paths, columns=["image_id"])
test_df['label'] = predictions

test_df
In [ ]:
# Saving predictions
test_df.to_csv("submission.csv", index=False)

To download the generated csv in colab run the below command

In [ ]:
try:
    from google.colab import files
    files.download('submission.csv') 
except:
    print("Option Only avilable in Google Colab")

Well Done! 👍 We are all set to make a submission and see your name on leaderborad. Let navigate to challenge page and make one.

In [ ]:

↕️  Read More


Comments

You must login before you can post a comment.