AIcrowd Research

AIcrowd Community tackles some of the most diverse and interesting problems in AI. Check out the research we're proud to facilitate below.



Participate in challenges and see your contributions turn into published research papers.


Contribute with your engineering or writing skills to AIcrowd’s ongoing research projects.


Jump into ongoing research discussions and share your ideas with the AIcrowd community.


  • Efficient automated scheduling of trains remains a major challenge for modern railway systems. The underlying vehicle rescheduling problem (VRSP) has been a major focus of Operations Research (OR) since decades. Traditional approaches use complex simulators to study VRSP, where experimenting with a broad range of novel ideas is time consuming and has a huge computational overhead. In this paper, we introduce a two-dimensional simplified grid environment called "Flatland" that allows for faster experimentation. Flatland does not only reduce the complexity of the full physical simulation, but also provides an easy-to-use interface to test novel approaches for the VRSP, such as Reinforcement Learning (RL) and Imitation Learning (IL). In order to probe the potential of Machine Learning (ML) research on Flatland, we (1) ran a first series of RL and IL experiments and (2) design and executed a public Benchmark at NeurIPS 2020 to engage a large community of researchers to work on this problem. Our own experimental results, on the one hand, demonstrate that ML has potential in solving the VRSP on Flatland. On the other hand, we identify key topics that need further research. Overall, the Flatland environment has proven to be a robust and valuable framework to investigate the VRSP for railway networks. Our experiments provide a good starting point for further research and for the participants of the NeurIPS 2020 Flatland Benchmark. All of these efforts together have the potential to have a substantial impact on shaping the mobility of the future.
  • Although deep reinforcement learning has led to breakthroughs in many difficult domains, these successes have required an ever-increasing number of samples, affording only a shrinking segment of the AI community access to their development. Resolution of these limitations requires new, sample-efficient methods. To facilitate research in this direction, we propose this second iteration of the MineRL Competition. The primary goal of the competition is to foster the development of algorithms which can efficiently leverage human demonstrations to drastically reduce the number of samples needed to solve complex, hierarchical, and sparse environments. To that end, participants compete under a limited environment sample-complexity budget to develop systems which solve the MineRL ObtainDiamond task in Minecraft, a sequential decision making environment requiring long-term planning, hierarchical control, and efficient exploration methods. The competition is structured into two rounds in which competitors are provided several paired versions of the dataset and environment with different game textures and shaders. At the end of each round, competitors submit containerized versions of their learning algorithms to the AIcrowd platform where they are trained from scratch on a hold-out dataset-environment pair for a total of 4-days on a pre-specified hardware platform. In this follow-up iteration to the NeurIPS 2019 MineRL Competition, we implement new features to expand the scale and reach of the competition. In response to the feedback of the previous participants, we introduce a second minor track focusing on solutions without access to environment interactions of any kind except during test-time. Further we aim to prompt domain agnostic submissions by implementing several novel competition mechanics including action-space randomization and desemantization of observations and actions.
  • This report to our stage 2 submission to the NeurIPS 2019 disentanglement challenge presents a simple image preprocessing method for learning disentangled latent factors. We propose to train a variational autoencoder on regionally aggregated feature maps obtained from networks pretrained on the ImageNet database, utilizing the implicit inductive bias contained in those features for disentanglement. This bias can be further enhanced by explicitly fine-tuning the feature maps on auxiliary tasks useful for the challenge, such as angle, position estimation, or color classification. Our approach achieved the 2nd place in stage 2 of the challenge.
  • Open-ended learning, also called life-long learning or autonomous curriculum learning, aims to program machines and robots that autonomously acquire knowledge and skills in a cumulative fashion. We illustrate the first edition of the REAL-2019 – Robot open-Ended Autonomous Learning competition, prompted by the EU project GOAL-Robots – Goal-based Open-ended Autonomous Learning Robots. The competition was based on a simulated robot that: (a) acquires sensorimotor competence to interact with objects on a table; (b) learns autonomously based on mechanisms such as curiosity, intrinsic motivations, and self-generated goals. The competition featured a first intrinsic phase, where the robots learned to interact with the objects in a fully autonomous way (no rewards, predefined tasks or human guidance), and a second extrinsic phase, where the acquired knowledge was evaluated with tasks unknown during the first phase. The competition ran online on AIcrowd for six months, involved 75 subscribers and 6 finalists, and was presented at NeurIPS-2019. The competition revealed very hard as it involved difficult machine learning challenges usually tackled in isolation, such as exploration, sparse rewards, object learning, generalisation, catastrophic interference, and autonomous skill learning. Following the participant’s positive feedback, the preparation of a second REAL-2020 competition is underway, improving on the formulation of a relevant benchmark for open-ended learning.
  • A robust snake species classifier could aid in the treatment of snake bites. In this report, the technique of transfer learning is revisited to understand the significance of the underlying pre-trained network and the supervised datasets used for pre-training. In low data regime, the methodology of transfer learning has been instrumental in building reliable image classifiers. Comparisons are made between the pre-trained networks trained on datasets of different sizes and classes. Performance improves significantly when the pre-trained network is trained on a much larger supervised dataset. Using country metadata improves the performance considerably. In SnakeCLEF2020 challenge, an F1-score of 0.625 was achieved.
  • Adversarial Vision Challenge
    Wieland Brendel
    Jonas Rauber Alexey Kurakin
    Nicolas Papernot Behar Veliqi
    +3 more

    Aug 2018

    The NIPS 2018 Adversarial Vision Challenge is a competition to facilitate measurable progress towards robust machine vision models and more generally applicable adversarial attacks. This document is an updated version of our competition proposal that was accepted in the competition track of 32nd Conference on Neural Information Processing Systems (NIPS 2018).
See all Publications →