MABe Task 1: Classical Classification
[Task 1] Classical Classification [Baseline]
Baseline notebook for MABe Classical Classification
🐀🐀🐀🐀🐀🐀🐀🐀🐀🐀🐀🐁🐁🐁🐁🐁🐁🐁🐁🐁🐁
🐀 MABe Classical Classification: Starter kit 🐁
🐀🐀🐀🐀🐀🐀🐀🐀🐀🐀🐀🐁🐁🐁🐁🐁🐁🐁🐁🐁🐁
🐀 MABe Classical Classification: Starter kit 🐁
🐀🐀🐀🐀🐀🐀🐀🐀🐀🐀🐀🐁🐁🐁🐁🐁🐁🐁🐁🐁🐁
How to use this notebook 📝¶
- Copy the notebook. This is a shared template and any edits you make here will not be saved. You should copy it into your own drive folder. For this, click the "File" menu (top-left), then "Save a Copy in Drive". You can edit your copy however you like.
- Link it to your AIcrowd account. In order to submit your predictions to AIcrowd, you need to provide your account's API key.
Setup AIcrowd Utilities 🛠¶
In [ ]:
!pip install -U aicrowd-cli==0.1 > /dev/null
Install packages 🗃¶
Please add all pacakages installations in this section
In [ ]:
!pip install numpy pandas
Import necessary modules and packages 📚¶
In [ ]:
import pandas as pd
import numpy as np
import os
Download the dataset 📲¶
Please get your API key from https://www.aicrowd.com/participants/me
In [ ]:
API_KEY = "6d9b67915c94a7b780aef947bb84bd93"
!aicrowd login --api-key $API_KEY
In [ ]:
!aicrowd dataset download --challenge mabe-task-1-classical-classification
Extract the downloaded dataset to data
directory
In [ ]:
!rm -rf data
!mkdir data
!mv train.npy data/train.npy
!mv test-release.npy data/test.npy
!mv sample-submission.npy data/sample_submission.npy
In [ ]:
train = np.load('data/train.npy',allow_pickle=True).item()
test = np.load('data/test.npy',allow_pickle=True).item()
sample_submission = np.load('data/sample_submission.npy',allow_pickle=True).item()
Dataset Specifications 💾¶
train.npy
- Training set for the task, which follows the following schema:
test-release.npy
- Test set for the task, which follows the following schema :
sample_submission.npy
- Template for a sample submission which follows the following schema
{
"<sequence_id-1>" : [0, 0, 1, 2, ...],
"<sequence_id-2>" : [0, 1, 2, 0, ...]
}
Each key in the dictionary here refers to the unique sequence id obtained for the sequences in the test set. The value for each of the keys is expected to hold a list of corresponing annotations. The annotations are represented by the index of the corresponding annotation words in the vocabular provided in the test set.
In [ ]:
print("Dataset keys - ", train.keys())
print("Vocabulary - ", train['vocabulary'])
print("Number of train Sequences - ", len(train['sequences']))
print("Number of test Sequences - ", len(test['sequences']))
Sample overview¶
In [ ]:
sequence_names = list(train["sequences"].keys())
sequence_key = sequence_names[0]
single_sequence = train["sequences"][sequence_key]
print("Sequence name - ", sequence_key)
print("Single Sequence keys ", single_sequence.keys())
print(f"Number of Frames in {sequence_key} - ", len(single_sequence['annotations']))
print(f"Keypoints data shape of {sequence_key} - ", single_sequence['keypoints'].shape)
print(f"annotator_id of {sequence_key} - ", single_sequence['annotator_id'])
Helper function for visualization 💁¶
Don't forget to run the cell 😉
In [ ]:
import matplotlib.pyplot as plt
from matplotlib import animation
from matplotlib import colors
from matplotlib import rc
rc('animation', html='jshtml')
# Note: Image processing may be slow if too many frames are animated.
#Plotting constants
FRAME_WIDTH_TOP = 1024
FRAME_HEIGHT_TOP = 570
RESIDENT_COLOR = 'lawngreen'
INTRUDER_COLOR = 'skyblue'
PLOT_MOUSE_START_END = [(0, 1), (0, 2), (1, 3), (2, 3), (3, 4),
(3, 5), (4, 6), (5, 6), (1, 2)]
class_to_color = {'other': 'white', 'attack' : 'red', 'mount' : 'green',
'investigation': 'orange'}
class_to_number = {s: i for i, s in enumerate(train['vocabulary'])}
number_to_class = {i: s for i, s in enumerate(train['vocabulary'])}
def num_to_text(anno_list):
return np.vectorize(number_to_class.get)(anno_list)
def set_figax():
fig = plt.figure(figsize=(6, 4))
img = np.zeros((FRAME_HEIGHT_TOP, FRAME_WIDTH_TOP, 3))
ax = fig.add_subplot(111)
ax.imshow(img)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
return fig, ax
def plot_mouse(ax, pose, color):
# Draw each keypoint
for j in range(7):
ax.plot(pose[j, 0], pose[j, 1], 'o', color=color, markersize=5)
# Draw a line for each point pair to form the shape of the mouse
for pair in PLOT_MOUSE_START_END:
line_to_plot = pose[pair, :]
ax.plot(line_to_plot[:, 0], line_to_plot[
:, 1], color=color, linewidth=1)
def animate_pose_sequence(video_name, keypoint_sequence, start_frame = 0, stop_frame = 100,
annotation_sequence = None):
# Returns the animation of the keypoint sequence between start frame
# and stop frame. Optionally can display annotations.
seq = keypoint_sequence.transpose((0,1,3,2))
image_list = []
counter = 0
for j in range(start_frame, stop_frame):
if counter%20 == 0:
print("Processing frame ", j)
fig, ax = set_figax()
plot_mouse(ax, seq[j, 0, :, :], color=RESIDENT_COLOR)
plot_mouse(ax, seq[j, 1, :, :], color=INTRUDER_COLOR)
if annotation_sequence is not None:
annot = annotation_sequence[j]
annot = number_to_class[annot]
plt.text(50, -20, annot, fontsize = 16,
bbox=dict(facecolor=class_to_color[annot], alpha=0.5))
ax.set_title(
video_name + '\n frame {:03d}.png'.format(j))
ax.axis('off')
fig.tight_layout(pad=0)
ax.margins(0)
fig.canvas.draw()
image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(),
dtype=np.uint8)
image_from_plot = image_from_plot.reshape(
fig.canvas.get_width_height()[::-1] + (3,))
image_list.append(image_from_plot)
plt.close()
counter = counter + 1
# Plot animation.
fig = plt.figure()
plt.axis('off')
im = plt.imshow(image_list[0])
def animate(k):
im.set_array(image_list[k])
return im,
ani = animation.FuncAnimation(fig, animate, frames=len(image_list), blit=True)
return ani
def plot_annotation_strip(annotation_sequence, start_frame = 0, stop_frame = 100, title="Behavior Labels"):
# Plot annotations as a annotation strip.
# Map annotations to a number.
annotation_num = []
for item in annotation_sequence[start_frame:stop_frame]:
annotation_num.append(class_to_number[item])
all_classes = list(set(annotation_sequence[start_frame:stop_frame]))
cmap = colors.ListedColormap(['red', 'orange', 'green', 'white'])
bounds=[-0.5,0.5,1.5, 2.5, 3.5]
norm = colors.BoundaryNorm(bounds, cmap.N)
height = 200
arr_to_plot = np.repeat(np.array(annotation_num)[:,np.newaxis].transpose(),
height, axis = 0)
fig, ax = plt.subplots(figsize = (16, 3))
ax.imshow(arr_to_plot, interpolation = 'none',cmap=cmap, norm=norm)
ax.set_yticks([])
ax.set_xlabel('Frame Number')
plt.title(title)
import matplotlib.patches as mpatches
legend_patches = []
for item in all_classes:
legend_patches.append(mpatches.Patch(color=class_to_color[item], label=item))
plt.legend(handles=legend_patches,loc='center left', bbox_to_anchor=(1, 0.5))
plt.tight_layout()
Visualize the mouse movements🎥¶
Sample visualization for plotting pose gifs.
In [ ]:
keypoint_sequence = single_sequence['keypoints']
annotation_sequence = single_sequence['annotations']
ani = animate_pose_sequence(sequence_key,
keypoint_sequence,
start_frame = 3000,
stop_frame = 3100,
annotation_sequence = annotation_sequence)
# Display the animaion on colab
ani
Out[ ]: