2021-06-16 19:39:16,872:INFO:run_airborne_metrics.py:160 Encounter ground truth: data/evaluation/gt/groundtruth_with_encounters_maxRange700_maxGap3_minEncLen30.csv
2021-06-16 19:39:16,873:INFO:calculate_encounters.py:83 Asserting data/evaluation/gt/groundtruth.json format
2021-06-16 19:39:16,873:INFO:pandas_utils.py:87 Reading ground truth
2021-06-16 19:39:16,873:INFO:pandas_utils.py:61 Reading provided data/evaluation/gt/groundtruth.json
2021-06-16 19:39:16,873:INFO:pandas_utils.py:68 Loading .json
2021-06-16 19:39:16,881:INFO:pandas_utils.py:75 Normalizing json. This operation is time consuming. The result .csv will be saved Please consider providing .csv file next time
2021-06-16 19:39:16,958:INFO:calculate_encounters.py:268 Saving groundtruth in .csv format, please use .csv in the future
2021-06-16 19:39:16,981:INFO:calculate_encounters.py:273 Filtering ground truth to get intruders in the specified range <= 700m.
2021-06-16 19:39:17,005:INFO:utils.py:157 NumExpr defaulting to 4 threads.
2021-06-16 19:39:17,011:INFO:calculate_encounters.py:277 Finding encounters and adding their information to the ground truth
2021-06-16 19:39:17,055:INFO:calculate_encounters.py:290 Saving ground truth + encounters dataframe to data/evaluation/gt/groundtruth_with_encounters_maxRange700_maxGap3_minEncLen30.csv
2021-06-16 19:39:17,089:INFO:calculate_encounters.py:302 Saving only valid encounters info dataframe to data/evaluation/gt/valid_encounters_maxRange700_maxGap3_minEncLen30.csv
2021-06-16 19:39:17,090:INFO:calculate_encounters.py:307 Saving only valid encounters info in json format to data/evaluation/gt/valid_encounters_maxRange700_maxGap3_minEncLen30.json
2021-06-16 19:39:17,094:INFO:match_groundtruth_results.py:516 Reading input ground truth and results
2021-06-16 19:39:17,094:INFO:pandas_utils.py:87 Reading ground truth
2021-06-16 19:39:17,094:INFO:pandas_utils.py:61 Reading provided data/evaluation/gt/groundtruth.csv
2021-06-16 19:39:17,104:INFO:match_groundtruth_results.py:522 Number of evaluated images is 2399
2021-06-16 19:39:17,104:INFO:pandas_utils.py:96 Reading detection results
2021-06-16 19:39:17,104:INFO:pandas_utils.py:61 Reading provided data/evaluation/result/result.json
2021-06-16 19:39:17,104:INFO:pandas_utils.py:68 Loading .json
2021-06-16 19:39:17,105:INFO:pandas_utils.py:75 Normalizing json. This operation is time consuming. The result .csv will be saved Please consider providing .csv file next time
2021-06-16 19:39:17,111:INFO:match_groundtruth_results.py:527 Saving airborne classifier results in .csv format, please use .csv in the future
2021-06-16 19:39:17,114:INFO:match_groundtruth_results.py:529 Number of evaluated unique detections is 273
2021-06-16 19:39:17,114:INFO:match_groundtruth_results.py:530 Filtering results based on results score 0.00
2021-06-16 19:39:17,117:INFO:match_groundtruth_results.py:536 Enumerating detections with detection_id
2021-06-16 19:39:17,118:INFO:match_groundtruth_results.py:547 Using track_id as track_id
2021-06-16 19:39:17,125:INFO:match_groundtruth_results.py:552 Augmenting with track length
2021-06-16 19:39:17,135:INFO:match_groundtruth_results.py:554 Filtering results with track length below 0
2021-06-16 19:39:17,135:INFO:match_groundtruth_results.py:557 Computing ground truth and detection match based on extended_iou_minObjArea_100
2021-06-16 19:39:17,142:INFO:match_groundtruth_results.py:464 Pairing each ground truth intruder with each detection in the respective frame
2021-06-16 19:39:17,157:INFO:match_groundtruth_results.py:471 Augmenting with original iou for comparison
2021-06-16 19:39:17,165:INFO:match_groundtruth_results.py:477 Extending bounding boxes based on groundtruth area
2021-06-16 19:39:17,165:INFO:match_groundtruth_results.py:296 Extending bounding boxes based on ground truth area
2021-06-16 19:39:17,167:INFO:match_groundtruth_results.py:307 Number of objects with ground truth area less than 100 is 91
2021-06-16 19:39:17,174:INFO:match_groundtruth_results.py:322 There are no detections with area below 100 that are being matched to extended ground truth
2021-06-16 19:39:17,174:INFO:match_groundtruth_results.py:480 Augmenting with extended iou with minimum object area of 100
2021-06-16 19:39:17,181:INFO:match_groundtruth_results.py:200 IoU matching: match minimum iou = 0.20, and no match maximum iou = 0.02
2021-06-16 19:39:17,191:INFO:match_groundtruth_results.py:487 Matching done
2021-06-16 19:39:17,192:INFO:match_groundtruth_results.py:563 Saving ground truth and detection match results to data/evaluation/result/result_metrics_min_track_len_0/gt_det_matches_extended_iou_minObjArea_100_matchThresh_0_2_noMatchThresh_0_02.csv
2021-06-16 19:39:17,251:INFO:calculate_airborne_metrics.py:715 Reading ground truth detection matches from data/evaluation/result/result_metrics_min_track_len_0/gt_det_matches_extended_iou_minObjArea_100_matchThresh_0_2_noMatchThresh_0_02.csv
2021-06-16 19:39:17,262:WARNING:calculate_airborne_metrics.py:722 Reading ground truth with encounters from data/evaluation/gt/groundtruth_with_encounters_maxRange700_maxGap3_minEncLen30.csv
2021-06-16 19:39:17,269:INFO:calculate_airborne_metrics.py:727 Maximum range of encounter is 699.85
2021-06-16 19:39:17,269:INFO:calculate_airborne_metrics.py:742 The provided minimum detection score 0.00000 will be used
2021-06-16 19:39:17,269:INFO:calculate_airborne_metrics.py:745 Frame level metrics calculation for score threshold = 0.7001715688383829
2021-06-16 19:39:17,286:INFO:calculate_airborne_metrics.py:254 FAR calculation: Using unique flight ids in the provided data frame to calculate total number of processed flights
2021-06-16 19:39:17,286:INFO:calculate_airborne_metrics.py:260 FAR calculation: Total number of processed flights is 2
2021-06-16 19:39:17,287:INFO:calculate_airborne_metrics.py:261 FAR calculation: Total number of processed hours is 0.067
2021-06-16 19:39:17,287:INFO:calculate_airborne_metrics.py:206 Filtering score threshold = 0.700
2021-06-16 19:39:17,289:INFO:calculate_airborne_metrics.py:176 Calculating the number of unique tracks ids that that correspond to at least one not matched detection
2021-06-16 19:39:17,297:INFO:calculate_airborne_metrics.py:197 Number of unique track_ids that correspond to at least one false detection 2
2021-06-16 19:39:17,297:INFO:calculate_airborne_metrics.py:267 FAR = 30.00000
2021-06-16 19:39:17,297:INFO:calculate_airborne_metrics.py:227 FPPI calculation: Using unique image names in the provided data frame to calculate total number of processed frames
2021-06-16 19:39:17,297:INFO:calculate_airborne_metrics.py:231 FPPI calculation: Total number of processed frames is 2399
2021-06-16 19:39:17,298:INFO:calculate_airborne_metrics.py:206 Filtering score threshold = 0.700
2021-06-16 19:39:17,300:INFO:calculate_airborne_metrics.py:151 Calculating the number of detections that did not match ground truth
2021-06-16 19:39:17,304:INFO:calculate_airborne_metrics.py:171 No match calculation: Number of detections without a match = 273 out of 273 unique detections
2021-06-16 19:39:17,304:INFO:calculate_airborne_metrics.py:234 FPPI = 0.11380
2021-06-16 19:39:17,304:INFO:calculate_airborne_metrics.py:343 PD calculation: Intruders Range = [0.0, 699.8]
2021-06-16 19:39:17,308:INFO:calculate_airborne_metrics.py:303 PD calculation: Number of intruders to detect = 272
2021-06-16 19:39:17,308:INFO:calculate_airborne_metrics.py:206 Filtering score threshold = 0.700
2021-06-16 19:39:17,311:INFO:calculate_airborne_metrics.py:272 Calculating the number of intruders that were matched by detections
2021-06-16 19:39:17,316:INFO:calculate_airborne_metrics.py:287 Detected intruders calculation: Number of detected intruders = 0
2021-06-16 19:39:17,316:INFO:calculate_airborne_metrics.py:314 PD = 0.000 = 0 / 272
2021-06-16 19:39:17,316:INFO:calculate_airborne_metrics.py:360 PD calculation: gt_area > 200 and id.str.contains("Flock") == False and id.str.contains("Bird") == False
2021-06-16 19:39:17,324:INFO:calculate_airborne_metrics.py:303 PD calculation: Number of intruders to detect = 1325
2021-06-16 19:39:17,325:INFO:calculate_airborne_metrics.py:206 Filtering score threshold = 0.700
2021-06-16 19:39:17,329:INFO:calculate_airborne_metrics.py:272 Calculating the number of intruders that were matched by detections
2021-06-16 19:39:17,335:INFO:calculate_airborne_metrics.py:287 Detected intruders calculation: Number of detected intruders = 0
2021-06-16 19:39:17,335:INFO:calculate_airborne_metrics.py:314 PD = 0.000 = 0 / 1325
2021-06-16 19:39:17,336:INFO:calculate_airborne_metrics.py:360 PD calculation: gt_area <= 200 and id.str.contains("Flock") == False and id.str.contains("Bird") == False
2021-06-16 19:39:17,344:INFO:calculate_airborne_metrics.py:303 PD calculation: Number of intruders to detect = 99
2021-06-16 19:39:17,344:INFO:calculate_airborne_metrics.py:206 Filtering score threshold = 0.700
2021-06-16 19:39:17,347:INFO:calculate_airborne_metrics.py:272 Calculating the number of intruders that were matched by detections
2021-06-16 19:39:17,351:INFO:calculate_airborne_metrics.py:287 Detected intruders calculation: Number of detected intruders = 0
2021-06-16 19:39:17,351:INFO:calculate_airborne_metrics.py:314 PD = 0.000 = 0 / 99
2021-06-16 19:39:17,353:INFO:calculate_airborne_metrics.py:500 Thresholding score
2021-06-16 19:39:17,360:INFO:calculate_airborne_metrics.py:507 Number of encounters to detect 2
2021-06-16 19:39:17,361:INFO:calculate_airborne_metrics.py:509 Combining encounters with results
2021-06-16 19:39:17,369:INFO:calculate_airborne_metrics.py:513 Grouping data frame with matches to getdetection matches per encounter
2021-06-16 19:39:17,371:INFO:calculate_airborne_metrics.py:516 Augmenting with moving frame level detection rate, this might take some time
2021-06-16 19:39:17,389:INFO:calculate_airborne_metrics.py:520 Merge frame_level detection rate
2021-06-16 19:39:17,395:INFO:calculate_airborne_metrics.py:526 Grouping data frame with matches to get matched track_ids per frame and object
2021-06-16 19:39:17,434:INFO:calculate_airborne_metrics.py:531 Grouping data frame with matches to get matched track_ids per encounter and frame
2021-06-16 19:39:17,468:INFO:calculate_airborne_metrics.py:599 Checking if encounters were detected
2021-06-16 19:39:17,483:INFO:calculate_airborne_metrics.py:599 Checking if encounters were detected
2021-06-16 19:39:17,496:INFO:calculate_airborne_metrics.py:771 Saving results
2021-06-16 19:39:17,498:INFO:calculate_airborne_metrics.py:794 Data frame with information on encounter detection is saved to data/evaluation/result/result_metrics_min_track_len_0/airborne_metrics_moving_30_fl_dr_0p5_encounter_detections_far_30_0.csv and data/evaluation/result/result_metrics_min_track_len_0/airborne_metrics_moving_30_fl_dr_0p5_encounter_detections_far_30_0_tracking.csv
2021-06-16 19:39:17,499:INFO:calculate_airborne_metrics.py:798 Data frame with information on encounter detection is saved to data/evaluation/result/result_metrics_min_track_len_0/airborne_metrics_moving_30_fl_dr_0p5_encounter_detections_far_30_0.json
2021-06-16 19:39:17,500:INFO:calculate_airborne_metrics.py:801 Calculating final summary
2021-06-16 19:39:17,524:INFO:calculate_airborne_metrics.py:819 Summary
2021-06-16 19:39:17,524:INFO:calculate_airborne_metrics.py:825 The minimum detection score is 0.700
2021-06-16 19:39:17,524:INFO:calculate_airborne_metrics.py:827 FPPI: 0.11380
2021-06-16 19:39:17,524:INFO:calculate_airborne_metrics.py:829 HFAR: 30.00000
2021-06-16 19:39:17,524:INFO:calculate_airborne_metrics.py:833 Planned Aircraft: 957
2021-06-16 19:39:17,524:INFO:calculate_airborne_metrics.py:834 Non-Planned Airborne: 1856
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:835 Non-Planned Aircraft: 467
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:837 All Aircraft: 1424
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:843 AFDR, aircraft with range <= 699.85: 0.00000 = 0 / 272
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:853 AFDR, aircraft with area > 200: 0.00000 = 0 / 1325
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:858 AFDR, aircraft with area <= 200: 0.00000 = 0 / 99
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:859 Detected Encounters based on Detections:
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:706 Max. range 300: Below Horizon: 0 / 0 = 0.000
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:706 Max. range 300: Mixed: 0 / 1 = 0.000
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:706 Max. range 300: Above Horizon: 0 / 1 = 0.000
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:706 Max. range 300: All: 0 / 2 = 0.000
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:863 Detected Encounters based on Tracking:
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:706 Max. range 300: Below Horizon: 0 / 0 = 0.000
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:706 Max. range 300: Mixed: 0 / 1 = 0.000
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:706 Max. range 300: Above Horizon: 0 / 1 = 0.000
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:706 Max. range 300: All: 0 / 2 = 0.000
2021-06-16 19:39:17,525:INFO:calculate_airborne_metrics.py:868 Saving summary to data/evaluation/result/result_metrics_min_track_len_0/summary_far_30_0_min_intruder_fl_dr_0p5_in_win_30.json
If you were to survey which features were the most popular among slots players, we would pretty much be able to guarantee that [url=https://casino2202.blogspot.com/2022/04/play-free-casino-games-no-download-no.html]free spins[/url] would be at the very top. There is nothing more satisfying than landing a ton of free spins and just sitting back and watching them reel in the wins. Find the best [url=https://casino2202.blogspot.com/2022/08/jackpot-city-casino-download-2022-play.html]online casinos[/url] USA to play games for real money. List of the top US Casinos that accept US players. United Statesโ leading gambling sites 2022 [url=https://casino2202.blogspot.com/2022/06/spin-palace-mobile-app-50-games-for.html]Spin Palace[/url] is your top destination for a safe and trusted online casino experience. Enjoy over 500 casino games in a secure, fair environment 24/7!
[url=]http://secure-casinos.com[/url]
If you were to survey which features were the most popular among slots players, we would pretty much be able to guarantee that [url=https://casino2202.blogspot.com/2022/10/slots-lv-casino-review-usa-friendly.html]free spins[/url] would be at the very top. There is nothing more satisfying than landing a ton of free spins and just sitting back and watching them reel in the wins. Find the best [url=https://casino2202.blogspot.com/2022/10/joe-fortune-casino-review-2022-top.html]online casinos[/url] USA to play games for real money. List of the top US Casinos that accept US players. United Statesโ leading gambling sites 2022 [url=https://casino2202.blogspot.com/2022/10/spin-palace-winners-top-wins-best-games.html]Spin Palace[/url] is your top destination for a safe and trusted online casino experience. Enjoy over 500 casino games in a secure, fair environment 24/7!
[url=]http://secure-casinos.com[/url]