Data Purchasing Challenge 2022
[LB 0.880] My Experiment Results + Baseline too I guess π¬
Experiment Results
EXPERIMENT RESULTS¶
This is my experiment results.
I'm using this same parameter for each experiment :
- model : efficienet-b1
- input: raw image
- epoch: 20
- optim: Adam
And here's the results :
exp no. | augmentation | pretrained | purchase_method | score_pretraining_phase | score_purchase_phase | score_validation_phase | LB_Score |
---|---|---|---|---|---|---|---|
1 | NO | NO | NO | 0.773 | 0.773 | 0.760 | |
2 | NO | NO | RANDOM 3000 | 0.773 | 0.804 | 0.760 | |
3 | NO | NO | ALL 10000 | 0.773 | 0.841 | 0.835 | |
4 | NO | YES | NO | 0.857 | 0.857 | 0.850 | |
5 | NO | YES | RANDOM 3000 | 0.857 | 0.864 | 0.845 | 0.851 |
6 | NO | YES | ALL 10000 | 0.857 | 0.892 | 0.875 | |
7 | YES | YES | NO | 0.868 | 0.868 | 0.865 | |
8 | YES | YES | RANDOM 3000 | 0.868 | 0.886 | 0.869 | 0.880 |
9 | YES | YES | ALL 10000 | 0.868 | 0.902 | 0.893 |
Conclusions :
- Use pretrained weight
- Use augmentation
- Smart purchase increase the score
Notebook Link :
No Augmentation, No Pretrained, No Purchase : LINK
No Augmentation, No Pretrained, Random 3000 Purchase : LINK
No Augmentation, No Pretrained, Full 10000 Purchase : LINK
No Augmentation, Pretrained, Random 3000 Purchase : LINK
No Augmentation, Pretrained, Full 10000 Purchase : LINK
Augmentation, Pretrained, Random 3000 Purchase (GITLAB) : LINK
Augmentation, Pretrained, Full 10000 Purchase : LINK
Pls leave some π thanks!
Content
Comments
You must login before you can post a comment.