Educational notebook on the example of the simple task
Building reproducable pipeline for classification on the example of the Mars Rotation task¶
Intro 👋¶
Hello!
This notebook is my solution for one of the AI Blitz tasks - Rover Classification.
So what we gonna do today? Here is the plan:
- Learn a bunch of tricks for boosting score on the example of my solution
- Learn how to use AI Crowd API
- Learn how to get data
- Learn how to merge datasets
- Meet K-fold Cross Validation
- Learn how to use config to configure the entire training
- Build advanced pipeline for training
- Build inference
Use the "table of contents" button to quickly navigate through the notebook.
Problem ❓¶
The problem that we're solving is Rover Classification, one of the AI Blitz #7 tasks. It's a Computer Vision Classification task. Our goal is to classify different rovers. We have 2 classes, so it's binary classification task.
Solution 💡¶
Before we start writing code, I wanna describe my solution. I will outline the main highlights, and you can find more detailed settings in the config.
- model - Mobile Net V2
- optimizer - Ranger
- learning rate - 0.003
- epoch - 30
- warm up epochs - 3
- early stopping - 8
- Loss Function - Cross Entropy Loss
- Image size - 256
- pretrained - True
- Frozen BatchNorm layers
- scheduler - CosineBatchDecayScheduler with gradual warm up (custom impelementation)
- mixed precision training (using native pytorch apex)
- gradient accumulation (iters_to_accumulate=8)
- batchsize - 64
- Augmentations: RandomBrightnessContrast, HueSaturationValue, Blur, Rotate, HorizontalFlip, VerticalFlip
- augmentations are turned off during the warm up
Installations 🌐¶
Authorization¶
First, we need to log in to the AI Crowd system. We will need this to get the data and make a submission.
from IPython.display import clear_output
import sys
!pip install aicrowd-cli==0.1
clear_output(wait=True)
print('Done!')
API_KEY = "" # Please enter your API Key from [https://www.aicrowd.com/participants/me]
!aicrowd login --api-key $API_KEY
Getting the data¶
Time to get the data.
!aicrowd dataset download --challenge rover-classification
!rm -rf data
!mkdir data
!unzip -q train.zip -d data/train
!unzip -q val.zip -d data/val
!unzip -q test.zip -d data/test
!mv train.csv data/train.csv
!mv val.csv data/val.csv
!mv sample_submission.csv data/sample_submission.csv
clear_output(wait=True)
print('Done!')
Before we train the model, let's take a look at the data.
import cv2
import os
from google.colab.patches import cv2_imshow
PATH = "/content/data/train"
filenames = os.listdir(PATH)[:10] # We'll check the first ten images
for filename in filenames:
print()
img = cv2.imread(os.path.join(PATH, filename))
cv2_imshow(img)
Merging datasets¶
Our data is pre-divided into a training and validation sample, this is quite convenient, but to get more accurate validation and high accuracy, I'm gonna use K-fold cross validation, for this we need to merge these two datasets into one to get a complete one. We'll do it in three steps: (1) renaming all the files in the validation dataset, (2) moving them into the training dataset, (3) merging csv-files.
This is not the most difficult task, so K-fold doesn't really matter here. However, I just wanna share code for this here to allow you use it in harder tasks in the future, because usually it's really hard to win competition without it. You can read more about it here.
# STEP 1
import os
from tqdm.notebook import tqdm
train_length = len(os.listdir("/content/data/train"))
for i in tqdm(range(len(os.listdir("/content/data/val")))):
os.rename(f"/content/data/val/{i}.jpg", f"/content/data/val/{i+train_length}.jpg")
# STEP 2
!git clone https://github.com/t0efL/Dataset-Fixer
!pip install -r /content/Dataset-Fixer/requirements.txt
sys.path.append("/content/Dataset-Fixer")
clear_output(wait=True)
print('Done!')
from dataset_fixer import folder_unpacker
folder_unpacker("/content/data/val", "/content/data/train") # Instant copy
# STEP 3
import pandas as pd
train = pd.read_csv("/content/data/train.csv")
val = pd.read_csv("/content/data/val.csv")
val["ImageID"] = [int(i) + train_length for i in val["ImageID"].values]
train = pd.concat([train, val], ignore_index=True)
train.to_csv("/content/data/train.csv")
Set up 🔨¶
Config¶
The main feature of this pipeline is reproducibility. You don't have to change code every time you're gonna test a new approach since you can set up everything you need through the config.
You can easily add new augmentations, loss functions, schedulers and optimizers in config to use them during the training. Moreover you can create custom ones by starting its name in the config from "/custom/" and creating fuction or class with the same name which returns an augmentation or just representing loss fucntion, scheduler or optimizer and takes parameters if needed. By custom functions, I mean those that are not in the pytorch library, and that I have to declare as global variables.
class cfg:
"""Main config."""
seed = 0xFACED # RANDOM SEED
NUMCLASSES = 2 # CONST
# MAIN SETTINGS
experiment_name = "experiment" # Name of the current approach
debug = False # Debug flag. If set to True,
# the number of samples will be decreased for faster experiments.
path_to_imgs = "/content/data/train" # Path to folder with train images
path_to_csv = "/content/data/train.csv" # Path to csv-file with targets
path = "PATH" # Working directory,
# the place where the logs and the weigths will be saved
log = "log.txt" # If exists, all the logs will be saved in this txt-file as well
chk = "" # Path to model checkpoint (weights).
# If exists, the model will be uploaded from this checkpoint.
device = "cuda" # Device
# MODEL'S SETTINGS
model_name = "/torch/mobilenet_v2" # PyTorch (/torch/) or timm (/timm/) model's name
pretrained = True # Pretrained flag
# TRAINING SETTINGS
num_epochs = 30 # Number of epochs (including warm-up ones)
warmup_epochs = 3 # Number of warm-up epochs
train_batchsize = 128 # Train Batch Size
train_shuffle = True # Shuffle during training
val_batchsize = 128 # Validation Batch Size
val_shuffle = False # Shuffle during validation
test_batchsize = 128 # Test Batch Size
test_shuffle = False # Shuffle during testing
num_workers = 4 # Number of workers (dataloader parameter)
verbose = True # If set to True, draws plots of loss changes and validation metric changes.
early_stopping = 8 # Interrupts training after a certain number of epochs if the metrics stops increasing,
# set the value to "-1" if you want to turn off this option.
savestep = 5 # Number of epochs in loop before saving model.
# Example: 10 means that weights will be saved each 10 epochs.
freeze_bn_layers = True # Freezing BatchNorm Layers flag
# VALIDATION STRATEGY SETTINGS
kfold = True # Uses Startified K-fold validation strategy if turned on.
# Otherwise, simple train-test split will be used.
n_splits = 5 # Number of splits for Stratified K-fold
fold = 1 # Number of fold to train
train_size, val_size, test_size = 0.8, 0.2, 0.0 # Sizes for train-test split.
# You can set 0.0 value for testsize,
# in this case test won't be used.
# APEX PARAMETERS
mixed_precision = True # Mixed precision training flag
gradient_accumulation = True # Gradient accumulation flag
iters_to_accumulate = 8 # Parameter for gradient accumulation
# TRANSFORMS AND AUGMENTATIONS SETTINGS
# Progressive resize parameters
start_size = 256 # Start size for progressive resize
final_size = 256 # Maximum size for progressive resize
size_step = 32 # Number to increase image size on each epoch
# Set the same values for start_size and final_size if you wan't to turn of progressive resize.
pretransforms = [ # Pre-transforms
dict(
name="Resize",
params=dict(
height=256,
width=256,
p=1.0,
)
),
]
augmentations = [ # Augmentations
dict(
name="HorizontalFlip",
params=dict(
p=0.5,
)
),
dict(
name="VerticalFlip",
params=dict(
p=0.5,
)
),
dict(
name="Rotate",
params=dict(
limit=[-180, 180],
p=0.5,
)
),
dict(
name="RandomBrightnessContrast",
params=dict(
brightness_limit=0.1,
contrast_limit=0.15,
p=0.5,
)
),
dict(
name="HueSaturationValue",
params=dict(
hue_shift_limit=20,
sat_shift_limit=30,
val_shift_limit=20,
p=0.5,
)
),
dict(
name="Blur",
params=dict(
blur_limit=2.5,
p=0.5,
)
),
]
posttransforms = [ # Post-transforms
dict(
name="Normalize",
params=dict(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
max_pixel_value=255.0,
)
),
dict(
name="/custom/totensor",
params=dict(
)
),
]
# OPTIMIZER SETTINGS
optimizer = "/custom/Ranger" # PyTorch optimizer or custom one
optimizer_params = dict(
lr=0.00003, # Learning rate
)
# SCHEDULER SETTINGS
scheduler = "/custom/CosineBatchDecayScheduler" # PyTorch scheduler or custom one
scheduler_params = dict(
epochs=120,
steps=44000 * 110 / train_batchsize,
batchsize=train_batchsize,
decay=32,
startepoch=4,
minlr=1e-8,
)
# LOSS FUNCTIONS SETTINGS
lossfn = "CrossEntropyLoss" # PyTorch loss fucntion or custom one
lossfn_params = dict(
)
# DON'T CHANGE
# Can be changed only with uploading the model from the checkpoint.
stopflag = 0
scheduler_state = None
optim_dict = None
epoch = 0
Installations¶
!pip uninstall albumentations --yes
!pip install albumentations
!pip install git+https://github.com/ildoonet/pytorch-gradual-warmup-lr.git
!git clone https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
sys.path.append("/content/Ranger-Deep-Learning-Optimizer")
!pip install timm
clear_output(wait=True)
print('Done!')
Imports¶
import random
import os
import gc
import cv2
import time
import math
import timm
import numpy as np
import pandas as pd
import albumentations as A
from albumentations.pytorch import ToTensor
import torch
import torch.nn as nn
from torch.optim.optimizer import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.cuda import amp
from torchvision import models
import torch.optim as optim
from tqdm.notebook import tqdm
from matplotlib import pyplot as plt
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split, KFold
from warmup_scheduler import GradualWarmupScheduler
from ranger.ranger import Ranger
import warnings
warnings.filterwarnings("ignore")
Reproducibility¶
def fullseed(seed=0xFACED):
"""Sets the random seeds."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
os.environ['PYTHONHASHSEED'] = str(seed)
fullseed(cfg.seed)
Checking device¶
assert torch.cuda.is_available() or not cfg.device == "cuda", "cuda isn't available"
device = torch.device(cfg.device)
print("Device:", device)
Initializing functions 💻¶
Custom fucntions and classes¶
def totensor():
"""An example of custom transform function."""
return A.pytorch.ToTensor()
class CosineBatchDecayScheduler(_LRScheduler):
"""
Custom scheduler with calculating learning rate according batchsize
based on Cosine Decay scheduler. Designed to use scheduler.step() every batch.
"""
def __init__(self, optimizer, steps, epochs, batchsize=128, decay=128, startepoch=1, minlr=1e-8, last_epoch=-1):
"""
Args:
optimizer (torch.optim.Optimizer): PyTorch Optimizer
steps (int): total number of steps
epochs (int): total number of epochs
batchsize (int): current training batchsize. Default: 128
decay (int): batchsize based on which the learning rate will be calculated. Default: 128
startepoch (int): number of epoch when the scheduler turns on. Default: 1
minlr (float): the lower threshold of learning rate. Default: 1e-8
last_epoch (int): The index of last epoch. Default: -1.
"""
decay = decay * math.sqrt(batchsize)
self.stepsize = batchsize / decay
self.startstep = steps / epochs * (startepoch - 1) * self.stepsize
self.minlr = minlr
self.steps = steps
self.stepnum = 0
super(CosineBatchDecayScheduler, self).__init__(optimizer, last_epoch)
def get_lr(self):
"""Formula for calculating the learning rate."""
self.stepnum += self.stepsize
if self.stepnum < self.startstep:
return [baselr for baselr in self.base_lrs]
return [max(self.minlr, 1/2 * (1 + math.cos(self.stepnum * math.pi / self.steps)) * self.optimizer.param_groups[0]['lr']) for t in range(len(self.base_lrs))]
class GradualWarmupSchedulerV2(GradualWarmupScheduler):
def __init__(self, optimizer, multiplier, total_epoch, after_scheduler=None):
super(GradualWarmupSchedulerV2, self).__init__(optimizer, multiplier, total_epoch, after_scheduler)
def get_lr(self):
if self.last_epoch > self.total_epoch:
if self.after_scheduler:
if not self.finished:
self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs]
self.finished = True
return self.after_scheduler.get_lr()
return [base_lr * self.multiplier for base_lr in self.base_lrs]
if self.multiplier == 1.0:
return [base_lr * (float(self.last_epoch) / self.total_epoch) for base_lr in self.base_lrs]
else:
return [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in
self.base_lrs]
Utils¶
def get_model(cfg):
"""Get PyTorch model."""
if cfg.chk: # Loading model from the checkpoint
print("Model:", cfg.model_name)
if cfg.model_name.startswith("/timm/"):
model = timm.create_model(cfg.model_name[6:], pretrained=False)
elif cfg.model_name.startswith("/torch/"):
model = getattr(models, cfg.model_name[7:])(pretrained=False)
else:
raise RuntimeError("Unknown model source. Use /timm/ or /torch/.")
# Changing the last layer according the number of classes
lastlayer = list(model._modules)[-1]
try:
setattr(model, lastlayer, nn.Linear(in_features=getattr(model, lastlayer).in_features,
out_features=cfg.NUMCLASSES, bias=True))
except AttributeError:
setattr(model, lastlayer, nn.Linear(in_features=getattr(model, lastlayer)[1].in_features,
out_features=cfg.NUMCLASSES, bias=True))
cp = torch.load(cfg.chk)
epoch, trainloss, valloss, metric, lr, stopflag = None, None, None, None, None, None
if 'model' in cp:
model.load_state_dict(cp['model'])
else:
model.load_state_dict(cp)
if 'epoch' in cp:
epoch = int(cp['epoch'])
cfg.epoch = epoch
cfg.warmup_epochs = max(1, cfg.warmup_epochs - epoch)
if 'trainloss' in cp:
trainloss = cp['trainloss']
if 'valloss' in cp:
valloss = cp['valloss']
if 'metric' in cp:
metric = cp['metric']
if 'optimizer' in cp:
cfg.optim_dict = cp['optimizer']
lr = cp['optimizer']["param_groups"][0]['lr']
if 'stopflag' in cp:
stopflag = cp['stopflag']
cfg.stopflag = stopflag
if 'scheduler' in cp:
cfg.scheduler_state = cp['scheduler']
if 'size' in cp:
cfg.start_size = cp['size']
print("Uploading model from the checkpoint...",
"\nEpoch:", epoch,
"\nTrain Loss:", trainloss,
"\nVal Loss:", valloss,
"\nMetrics:", metric,
"\nlr:", lr,
"\nstopflag:", stopflag)
else: # Creating a new model
print("Model:", cfg.model_name)
if cfg.model_name.startswith("/timm/"):
model = timm.create_model(cfg.model_name[6:], pretrained=cfg.pretrained)
elif cfg.model_name.startswith("/torch/"):
model = getattr(models, cfg.model_name[7:])(pretrained=cfg.pretrained)
else:
raise RuntimeError("Unknown model source. Use /timm/ or /torch/.")
# Changing the last layer according the number of classes
lastlayer = list(model._modules)[-1]
try:
setattr(model, lastlayer, nn.Linear(in_features=getattr(model, lastlayer).in_features,
out_features=cfg.NUMCLASSES, bias=True))
except AttributeError:
setattr(model, lastlayer, nn.Linear(in_features=getattr(model, lastlayer)[1].in_features,
out_features=cfg.NUMCLASSES, bias=True))
return model.to(cfg.device)
def get_optimizer(model, cfg):
"Get PyTorch optimizer."
optimizer = globals()[cfg.optimizer[8:]](model.parameters(), **cfg.optimizer_params) \
if cfg.optimizer.startswith("/custom/") \
else getattr(optim, cfg.optimizer)(model.parameters(), **cfg.optimizer_params)
if cfg.optim_dict:
optimizer.load_state_dict(cfg.optim_dict)
return optimizer
def get_scheduler(optimizer, cfg):
"""Get PyTorch scheduler."""
afterone = globals()[cfg.scheduler[8:]](optimizer, **cfg.scheduler_params) \
if cfg.scheduler.startswith("/custom/") \
else getattr(optim.lr_scheduler, cfg.scheduler)(optimizer, **cfg.scheduler_params)
scheduler = GradualWarmupSchedulerV2(optimizer, multiplier=100, total_epoch=cfg.warmup_epochs, after_scheduler=afterone)
if cfg.scheduler_state:
scheduler.load_state_dict(cfg.scheduler_state)
return scheduler
def get_lossfn(cfg):
"""Get PyTorch loss function."""
return globals()[cfg.lossfn[8:]](**cfg.lossfn_params) \
if cfg.lossfn.startswith("/custom/") \
else getattr(nn, cfg.lossfn)(**cfg.lossfn_params)
def get_transforms(cfg):
"""Get train and test augmentations."""
pretransforms = [globals()[item["name"][8:]](**item["params"]) if item["name"].startswith("/custom/")
else getattr(A, item["name"])(**item["params"]) for item in cfg.pretransforms]
augmentations = [globals()[item["name"][8:]](**item["params"]) if item["name"].startswith("/custom/")
else getattr(A, item["name"])(**item["params"]) for item in cfg.augmentations]
posttransforms = [globals()[item["name"][8:]](**item["params"]) if item["name"].startswith("/custom/")
else getattr(A, item["name"])(**item["params"]) for item in cfg.posttransforms]
train = A.Compose(pretransforms + augmentations + posttransforms)
test = A.Compose(pretransforms + posttransforms)
return train, test
def savemodel(model, epoch, trainloss, valloss, metric, optimizer, stopflag, name, scheduler, size):
"""Saves PyTorch model."""
torch.save({
'model': model.state_dict(),
'epoch': epoch,
'trainloss': trainloss,
'valloss': valloss,
'metric': metric,
'optimizer': optimizer.state_dict(),
'stopflag': stopflag,
'scheduler': scheduler.state_dict(),
'size': size,
}, name)
def drawplot(trainlosses, vallosses, metrics, lrs):
"""Draws plots of loss changes and test metric changes."""
# Learning rate changes
plt.plot(range(len(lrs)), lrs, label='Learning rate')
plt.legend()
plt.title("Learning rate changes")
plt.show()
# Validation and train loss changes
plt.plot(range(len(trainlosses)), trainlosses, label='Train Loss')
plt.plot(range(len(vallosses)), vallosses, label='Val Loss')
plt.legend()
plt.title("Validation and train loss changes")
plt.show()
# Test metrics changes
plt.plot(range(len(metrics)), metrics, label='Metrics')
plt.legend()
plt.title("Test metrics changes")
plt.show()
def printreport(t, trainloss, valloss, metric, record):
"""Prints epoch's report."""
print(f'Time: {t} s')
print(f'Train Loss: {trainloss:.4f}')
print(f'Val Loss: {valloss:.4f}')
print(f'Metrics: {metric:.4f}')
print(f'Current best metrics: {record:.4f}')
def savelog(path, epoch, trainloss, valloss, metric):
"""Saves the epoch's log."""
with open(path, "a") as file:
file.write("epoch: " + str(epoch) + " trainloss: " + str(
round(trainloss, 5)) + " valloss: " + str(
round(valloss, 5)) + " metrics: " + str(round(metric, 5)) + "\n")
Data functions¶
Here you can notice one interesting moment. I decrease each class value predicted by model on 1 during the training and increase it on 1 during the inference (you'll see it at the end of the notebook). The reason is that labels in csv-file are ranged from 1 to 360, when loss function takes the labels ranged from 0 to n. So I'm training model on [0, ..., 359] classes and making submitting solution which contatins [1, ..., 360] classes. Otherwise it breaks the training or inference.
def datagenerator(cfg):
"""Generates data (images and targets) for train and test."""
print("Getting the data...")
assert cfg.train_size + cfg.val_size + cfg.test_size == 1, "the sum of the split size must be equal to 1."
data = pd.read_csv(cfg.path_to_csv)
if cfg.debug:
data = data.sample(n=1000, random_state=cfg.seed).reset_index(drop=True)
# One-hot encoding
target_mapping = {
"curiosity": 0,
"perseverance": 1,
}
data["label"] = data["label"].map(target_mapping)
if not cfg.kfold:
targets = list(data["label"])
files = list(data["ImageID"])
# If test size is equal zero, we split the data only into train and validation parts,
# otherwise we split it into train, validation and test parts.
trainimgs, testimgs, traintargets, testtargets = train_test_split(files, targets, train_size=cfg.train_size,
test_size=cfg.val_size + cfg.test_size,
random_state=cfg.seed, stratify=targets)
else:
kf = KFold(n_splits=cfg.n_splits, shuffle=False)
fold = 1
for train_index, test_index in kf.split(data):
if fold == cfg.fold:
trainimgs = list(data.iloc[train_index]["ImageID"])
traintargets = list(data.iloc[train_index]["label"])
testimgs = list(data.iloc[test_index]["ImageID"])
testtargets = list(data.loc[test_index]["label"])
break
fold += 1
if cfg.test_size == 0:
return trainimgs, traintargets, testimgs, testtargets
valimgs, testimgs, valtargets, testtargets = train_test_split(testimgs, testtargets,
train_size=cfg.val_size,
test_size=cfg.test_size,
random_state=cfg.seed,
stratify=testtargets)
return trainimgs, traintargets, valimgs, valtargets, testimgs, testtargets
class Dataset(torch.utils.data.Dataset):
"""Dataset for uploading images and targets."""
def __init__(self, cfg, images, targets, transforms):
self.images = images # List with images
self.targets = targets # List with targets
self.transforms = transforms # Transforms
self.cfg = cfg # Config
def __getitem__(self, idx):
img = cv2.imread(os.path.join(self.cfg.path_to_imgs, str(self.images[idx]) + ".jpg"))
img = self.transforms(image=img)["image"]
img = torch.FloatTensor(img)
target = torch.LongTensor([int(self.targets[idx])])
return img, target
def __len__(self):
return len(self.targets)
def get_loaders(cfg):
"""Getting dataloaders for train, validation (and test, if needed)."""
trainforms, testforms = get_transforms(cfg)
# If test size is equal zero, we create the loaders only for train and validation parts,
# otherwise we create the loaders for train, validation and test parts.
if cfg.test_size != 0.0:
trainimgs, traintargets, valimgs, valtargets, testimgs, testtargets = datagenerator(cfg)
traindataset = Dataset(cfg, trainimgs, traintargets, trainforms)
valdataset = Dataset(cfg, valimgs, valtargets, testforms)
testdataset = Dataset(cfg, testimgs, testtargets, testforms)
trainloader = torch.utils.data.DataLoader(traindataset,
shuffle=cfg.train_shuffle,
batch_size=cfg.train_batchsize,
pin_memory=False,
num_workers=cfg.num_workers,
persistent_workers=True)
valloader = torch.utils.data.DataLoader(valdataset,
shuffle=cfg.val_shuffle,
batch_size=cfg.val_batchsize,
pin_memory=False,
num_workers=cfg.num_workers,
persistent_workers=True)
testloader = torch.utils.data.DataLoader(testdataset,
shuffle=cfg.test_shuffle,
batch_size=cfg.test_batchsize,
pin_memory=False,
num_workers=cfg.num_workers,
persistent_workers=True)
return trainloader, valloader, testloader
else:
trainimgs, traintargets, valimgs, valtargets = datagenerator(cfg)
traindataset = Dataset(cfg, trainimgs, traintargets, trainforms)
valdataset = Dataset(cfg, valimgs, valtargets, testforms)
trainloader = torch.utils.data.DataLoader(traindataset,
shuffle=cfg.train_shuffle,
batch_size=cfg.train_batchsize,
pin_memory=False,
num_workers=cfg.num_workers,
persistent_workers=True)
valloader = torch.utils.data.DataLoader(valdataset,
shuffle=cfg.val_shuffle,
batch_size=cfg.val_batchsize,
pin_memory=False,
num_workers=cfg.num_workers,
persistent_workers=True)
return trainloader, valloader
Train functions¶
def train(cfg, model, trainloader, optimizer, lossfn, scheduler, epoch, size, scaler):
"""Train loop."""
print("Training")
model.train()
# Freezing BatchNorm layers
if cfg.freeze_bn_layers:
for name, child in (model.named_children()):
if name.find('BatchNorm') != -1:
for param in child.parameters():
param.requires_grad = False
else:
for param in child.parameters():
param.requires_grad = True
totalloss = 0.0
for step, batch in enumerate(tqdm(trainloader)):
inputs, labels = batch
labels = labels.squeeze(1).to(cfg.device)
if not cfg.gradient_accumulation:
optimizer.zero_grad()
if cfg.mixed_precision:
with amp.autocast():
outputs = model(inputs.to(cfg.device).float())
loss = lossfn(outputs, labels)
if cfg.gradient_accumulation:
loss = loss / cfg.iters_to_accumulate
else:
outputs = model(inputs.to(cfg.device).float())
loss = lossfn(outputs, labels)
totalloss += loss.item()
if cfg.mixed_precision:
scaler.scale(loss).backward()
else:
loss.backward()
if cfg.gradient_accumulation:
if (step + 1) % cfg.iters_to_accumulate == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
elif cfg.mixed_precision:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
if epoch >= cfg.warmup_epochs + 1:
scheduler.step()
if epoch < cfg.warmup_epochs + 1:
scheduler.step()
print("Learning rate:", optimizer.param_groups[0]['lr'])
return totalloss / len(trainloader)
def validation(model, valloader, lossfn, cfg):
"""Validation loop."""
print("Validating")
model.eval()
totalloss = 0.0
preds, targets = [], []
with torch.no_grad():
for batch in tqdm(valloader):
inputs, labels = batch
labels = labels.squeeze(1).to(cfg.device)
outputs = model(inputs.to(cfg.device))
for idx in np.argmax(outputs.cpu(), axis=1):
preds.append([1 if idx == i else 0 for i in range(5)])
for j in labels:
targets.append([1 if i == j else 0 for i in range(5)])
loss = lossfn(outputs, labels)
totalloss += loss.item()
score = f1_score(targets, preds, average='weighted')
return totalloss / len(valloader), score
def test(cfg, model, testloader, lossfn):
"""Testing loop."""
print("Testing")
model.eval()
totalloss = 0.0
preds, targets = [], []
with torch.no_grad():
for batch in tqdm(testloader):
inputs, labels = batch
labels = labels.squeeze(1).to(cfg.device)
outputs = model(inputs.to(cfg.device))
for idx in np.argmax(outputs.cpu(), axis=1):
preds.append([1 if idx == i else 0 for i in range(5)])
for j in labels:
targets.append([1 if i == j else 0 for i in range(5)])
loss = lossfn(outputs, labels)
totalloss += loss.item()
score = f1_score(targets, preds, average='weighted')
print("Test Loss:", totalloss / len(testloader),
"\nTest metrics:", score)
def run(cfg):
"""Main function."""
# Creating working directory
if not os.path.exists(cfg.path):
os.makedirs(cfg.path)
# Getting the objects
torch.cuda.empty_cache()
if cfg.test_size != 0.0:
trainloader, valloader, testloader = get_loaders(cfg)
else:
trainloader, valloader = get_loaders(cfg)
model = get_model(cfg)
optimizer = get_optimizer(model, cfg)
if cfg.mixed_precision:
scaler = amp.GradScaler()
else:
scaler = None
scheduler = get_scheduler(optimizer, cfg)
lossfn = get_lossfn(cfg)
# Initializing metrics
trainlosses, vallosses, metrics, lrs = [], [], [], []
record = 0
stopflag = cfg.stopflag if cfg.stopflag else 0
print('Testing "' + cfg.experiment_name + '" approach.')
if cfg.log:
with open(os.path.join(cfg.path, cfg.log), "w") as file:
file.write('Testing "' + cfg.experiment_name + '" approach.\n')
# Training
print("Have a nice training!")
augs = cfg.augmentations
size = cfg.start_size # Image size (Using progressive image size)
for epoch in range(cfg.epoch + 1, cfg.num_epochs + 1):
print("\nEpoch:", epoch)
if size < cfg.final_size and epoch > cfg.warmup_epochs:
size += cfg.size_step
if epoch < cfg.warmup_epochs + 1:
cfg.augmentations = [
]
else:
cfg.augmentations = augs
cfg.pretransforms = [
dict(
name="Resize",
params=dict(
height=size,
width=size,
p=1.0,
)
),
]
print("Image size:", size)
if cfg.test_size != 0.0:
trainloader, valloader, testloader = get_loaders(cfg)
else:
trainloader, valloader = get_loaders(cfg)
start_time = time.time()
trainloss = train(cfg, model, trainloader, optimizer, lossfn, scheduler, epoch, size, scaler)
valloss, metric = validation(model, valloader, lossfn, cfg)
trainlosses.append(trainloss)
vallosses.append(valloss)
metrics.append(metric)
lrs.append(optimizer.param_groups[0]['lr'])
if metric > record:
stopflag = 0
record = metric
savemodel(model, epoch, trainloss, valloss, metric,
optimizer, stopflag, os.path.join(cfg.path, 'thebest.pt'), scheduler, size)
print('New record!')
else:
stopflag += 1
if epoch % cfg.savestep == 0:
savemodel(model, epoch, trainloss, valloss, metric,
optimizer, stopflag, os.path.join(cfg.path, f'{epoch}epoch.pt'), scheduler, size)
t = int(time.time() - start_time)
printreport(t, trainloss, valloss, metric, record)
# Saving to the log
if cfg.log:
savelog(os.path.join(cfg.path, cfg.log), epoch, trainloss, valloss, metric)
torch.cuda.empty_cache()
gc.collect()
# Early stopping
if stopflag == cfg.early_stopping:
print("Training has been interrupted because of early stopping.")
break
if metric == 1.0: # You can turn it off
print("Training has been interrupted because of achieving max metric value.")
break
# Test
if cfg.test_size != 0.0:
test(cfg, model, testloader, lossfn)
# Verbose
if cfg.verbose:
drawplot(trainlosses, vallosses, metrics, lrs)
Training ⚡¶
Single Fold training
cfg.fold = 1
cfg.path = "./fold1"
run(cfg)
K-fold training
# for fold in range(1, 6):
# print(f"\nFOLD{fold}")
# cfg.fold = fold
# cfg.path = f"./fold{fold}"
# run(cfg)
Inference 🔦¶
PATH_TO_CSV = "/content/data/sample_submission.csv"
PATH_TO_IMGS = "/content/data/test"
DEVICE = cfg.device
MODELNAME = cfg.model_name
NUMCLASSES = cfg.NUMCLASSES
class Dataset(torch.utils.data.Dataset):
"""Dataset for uploading images and targets."""
def __init__(self, images, transforms):
self.images = images # List with targets
self.transforms = transforms # Transforms
def __getitem__(self, idx):
img = cv2.imread(os.path.join(PATH_TO_IMGS, str(self.images[idx]) + ".jpg"))
img = self.transforms(image=img)["image"]
img = torch.FloatTensor(img)
return img
def __len__(self):
return len(self.images)
transforms = A.Compose([
A.Resize(height=256,
width=256,
p=1.0,),
A.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
max_pixel_value=255.0,
p=1.0),
A.pytorch.ToTensor(),
])
df = pd.read_csv(PATH_TO_CSV)
imgs = df["ImageID"].values
dataset = Dataset(imgs, transforms)
dataloader = torch.utils.data.DataLoader(dataset,
shuffle=False,
batch_size=cfg.test_batchsize,
pin_memory=True,
num_workers=cfg.num_workers)
if cfg.model_name.startswith("/timm/"):
model = timm.create_model(cfg.model_name[6:], pretrained=False)
elif cfg.model_name.startswith("/torch/"):
model = getattr(models, cfg.model_name[7:])(pretrained=False)
lastlayer = list(model._modules)[-1]
try:
setattr(model, lastlayer, nn.Linear(in_features=getattr(model, lastlayer).in_features,
out_features=NUMCLASSES, bias=True))
except AttributeError:
setattr(model, lastlayer, nn.Linear(in_features=getattr(model, lastlayer)[1].in_features,
out_features=NUMCLASSES, bias=True))
modellist = []
for fold in range(1, 2): # 1 fold only (USE (1, 6) for 5 folds)
model.load_state_dict(torch.load(f"/content/fold{fold}/thebest.pt")["model"])
model.to(DEVICE)
model.eval()
modellist.append(model)
Single Fold inference
model = modellist[0]
preds = []
model.eval()
with torch.no_grad():
for img in tqdm(dataloader):
outputs = model(img.to(DEVICE))
outputs = (np.argmax(outputs.cpu(), axis=1)).tolist()
preds += outputs
K-fold inference
# preds = []
# with torch.no_grad():
# for img in tqdm(dataloader):
# outputs = None
# for model in modellist:
# output = model(img.to(cfg.device))
# if outputs is not None:
# outputs += output
# else:
# outputs = output
# preds += (np.argmax(outputs.to('cpu').numpy(), axis=1) + 1).tolist()
Submission 📩¶
target_mapping = {
0: "curiosity",
1: "perseverance",
}
df["label"] = preds
df["label"] = df["label"].map(target_mapping)
print(df.head())
df.to_csv("./submission.csv", index=False)
It causes error but submits successfully.
!aicrowd submission create -c rover-classification -f submission.csv
clear_output(wait=True)
print('Done!')
Outro 🏁¶
So that's the end. I hope you found it useful. Now you have even more knowledge and code in your inventory. Feel free to ask any questions. Thanks for reading! All the best! 👋