π Contribute : Found a typo? Or any other change in the description that you would like to see ? Please consider sending us a pull request in the public repo of the challenge here.
π΅οΈ Introduction
What does it take to go viral on social media ? We give you the features of news articles. Predict the number of 'share
' it gets on social platforms.
Understand with code! Here is getting started code for you.π
πΎ Dataset
The dataset contains 61 columns.
The goal is to predict shares
. Thus remaining 58 columns are used for prediction. Some of the columns are as follows - + n_tokens_title - Number of words in the title + num_imgs - Number of images present in the blog + average_token_length - Average length of the words in the content
More info is contained in dataset_info.txt
Files
Following files can be found in resources
section
train.csv
- (26715
samples) This csv file contains the attributes describing the blog written along with share count .test.csv
- (13082
samples)File that will be used for actual evaluation for the leaderboard score.
π Submission
- Prepare a CSV containing header as
share
and predicted value asshare count
respectively denoting the number of shares it will recieve. - Name of the above file should be
submission.csv
. - Sample submission format available at
sample_submission.csv
in the resorces section.
Make your first submission here π !!
π Evaluation Criteria
During evaluation MAE
or Mean Absolute Error
will be used for accuracy,
For secondary score we use RMSE
or Root Mean Squared Error
π Links
- πͺ Challenge Page : https://www.aicrowd.com/challenges/olnwp
- π£οΈ Discussion Forum : https://www.aicrowd.com/challenges/olnwp/discussion
- π Leaderboard : https://www.aicrowd.com/challenges/olnwp/leaderboards
π± Contact
π Refrences
- K. Fernandes, P. Vinagre and P. Cortez. A Proactive Intelligent Decision Support System for Predicting the Popularity of Online News. Proceedings of the 17th EPIA 2015 - Portuguese Conference on Artificial Intelligence, September, Coimbra, Portugal.
Participants

-3b80e3e05c82b7305a121c824cb54c72d94bfc5de9528b69fa6d82638a475dca.png)
-12d44b8484956303a9da45eb6677f5e430c25d2434f0a1e6fc9e4a6aa9947da6.png)



-3b80e3e05c82b7305a121c824cb54c72d94bfc5de9528b69fa6d82638a475dca.png)




-1b4da38ff74e25b6e280ed0e048e7a365079f44b45075b1fd4dc43fb68e76fff.png)


-e9457bf12aa7f46d874121bf4f45c1e6e7f861fb84bbdcd1b94510365e6bea6b.png)
-1b4da38ff74e25b6e280ed0e048e7a365079f44b45075b1fd4dc43fb68e76fff.png)

-1b4da38ff74e25b6e280ed0e048e7a365079f44b45075b1fd4dc43fb68e76fff.png)

-12d44b8484956303a9da45eb6677f5e430c25d2434f0a1e6fc9e4a6aa9947da6.png)
-62dbcda6cb15f3ab4796779fc8a95a1c45ef97f657f2f13a662d6c990f08cffd.png)

-aa56c1a4cce366c8e6eb7f7deb29409e3d3e6500a358f55e6d298b643dbbbf72.png)



-ce925c23916699c35af28573bfbb27d978edbcb3c30e9764209b2b9fa67bf075.png)


-12d44b8484956303a9da45eb6677f5e430c25d2434f0a1e6fc9e4a6aa9947da6.png)

-aa56c1a4cce366c8e6eb7f7deb29409e3d3e6500a358f55e6d298b643dbbbf72.png)


-12d44b8484956303a9da45eb6677f5e430c25d2434f0a1e6fc9e4a6aa9947da6.png)





Getting Started
Latest Submissions
see | graded |
see | graded |
see | graded |
see | graded |
see | graded |